Metamath Proof Explorer


Theorem dipcl

Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X=BaseSetU
ipcl.7 P=𝑖OLDU
Assertion dipcl UNrmCVecAXBXAPB

Proof

Step Hyp Ref Expression
1 ipcl.1 X=BaseSetU
2 ipcl.7 P=𝑖OLDU
3 eqid +vU=+vU
4 eqid 𝑠OLDU=𝑠OLDU
5 eqid normCVU=normCVU
6 1 3 4 5 2 ipval UNrmCVecAXBXAPB=k=14iknormCVUA+vUik𝑠OLDUB24
7 fzfid UNrmCVecAXBX14Fin
8 ax-icn i
9 elfznn k14k
10 9 nnnn0d k14k0
11 expcl ik0ik
12 8 10 11 sylancr k14ik
13 12 adantl UNrmCVecAXBXk14ik
14 1 3 4 5 2 ipval2lem4 UNrmCVecAXBXiknormCVUA+vUik𝑠OLDUB2
15 12 14 sylan2 UNrmCVecAXBXk14normCVUA+vUik𝑠OLDUB2
16 13 15 mulcld UNrmCVecAXBXk14iknormCVUA+vUik𝑠OLDUB2
17 7 16 fsumcl UNrmCVecAXBXk=14iknormCVUA+vUik𝑠OLDUB2
18 4cn 4
19 4ne0 40
20 divcl k=14iknormCVUA+vUik𝑠OLDUB2440k=14iknormCVUA+vUik𝑠OLDUB24
21 18 19 20 mp3an23 k=14iknormCVUA+vUik𝑠OLDUB2k=14iknormCVUA+vUik𝑠OLDUB24
22 17 21 syl UNrmCVecAXBXk=14iknormCVUA+vUik𝑠OLDUB24
23 6 22 eqeltrd UNrmCVecAXBXAPB