Metamath Proof Explorer


Theorem disjabrex

Description: Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Assertion disjabrex DisjxABDisjyz|xAz=By

Proof

Step Hyp Ref Expression
1 nfdisj1 xDisjxAB
2 nfcv _xy
3 nfv xiA
4 nfcsb1v _xi/xB
5 4 nfcri xji/xB
6 3 5 nfan xiAji/xB
7 6 nfab _xi|iAji/xB
8 7 nfuni _xi|iAji/xB
9 8 nfcsb1 _xi|iAji/xB/xB
10 9 nfeq1 xi|iAji/xB/xB=y
11 2 10 nfralw xjyi|iAji/xB/xB=y
12 eqeq2 y=Bi|iAji/xB/xB=yi|iAji/xB/xB=B
13 12 raleqbi1dv y=Bjyi|iAji/xB/xB=yjBi|iAji/xB/xB=B
14 vex yV
15 14 a1i DisjxAByV
16 simplll DisjxABxAjBiAji/xBDisjxAB
17 simpllr DisjxABxAjBiAji/xBxA
18 simprl DisjxABxAjBiAji/xBiA
19 simplr DisjxABxAjBiAji/xBjB
20 simprr DisjxABxAjBiAji/xBji/xB
21 csbeq1a x=iB=i/xB
22 4 21 disjif DisjxABxAiAjBji/xBx=i
23 16 17 18 19 20 22 syl122anc DisjxABxAjBiAji/xBx=i
24 simpr DisjxABxAjBx=ix=i
25 simpllr DisjxABxAjBx=ixA
26 24 25 eqeltrrd DisjxABxAjBx=iiA
27 simplr DisjxABxAjBx=ijB
28 21 eleq2d x=ijBji/xB
29 24 28 syl DisjxABxAjBx=ijBji/xB
30 27 29 mpbid DisjxABxAjBx=iji/xB
31 26 30 jca DisjxABxAjBx=iiAji/xB
32 23 31 impbida DisjxABxAjBiAji/xBx=i
33 equcom x=ii=x
34 32 33 bitrdi DisjxABxAjBiAji/xBi=x
35 34 abbidv DisjxABxAjBi|iAji/xB=i|i=x
36 df-sn x=i|i=x
37 35 36 eqtr4di DisjxABxAjBi|iAji/xB=x
38 37 unieqd DisjxABxAjBi|iAji/xB=x
39 unisnv x=x
40 38 39 eqtrdi DisjxABxAjBi|iAji/xB=x
41 csbeq1 i|iAji/xB=xi|iAji/xB/xB=x/xB
42 csbid x/xB=B
43 41 42 eqtrdi i|iAji/xB=xi|iAji/xB/xB=B
44 40 43 syl DisjxABxAjBi|iAji/xB/xB=B
45 44 ralrimiva DisjxABxAjBi|iAji/xB/xB=B
46 1 11 13 15 45 elabreximd DisjxAByz|xAz=Bjyi|iAji/xB/xB=y
47 46 ralrimiva DisjxAByz|xAz=Bjyi|iAji/xB/xB=y
48 invdisj yz|xAz=Bjyi|iAji/xB/xB=yDisjyz|xAz=By
49 47 48 syl DisjxABDisjyz|xAz=By