Metamath Proof Explorer


Theorem divcnvg

Description: The sequence of reciprocals of positive integers, multiplied by the factor A , converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion divcnvg AMnMAn0

Proof

Step Hyp Ref Expression
1 eluznn MnMn
2 eqidd nmAm=mAm
3 oveq2 m=nAm=An
4 3 adantl nm=nAm=An
5 id nn
6 ovexd nAnV
7 2 4 5 6 fvmptd nmAmn=An
8 7 eqcomd nAn=mAmn
9 1 8 syl MnMAn=mAmn
10 9 adantll AMnMAn=mAmn
11 10 mpteq2dva AMnMAn=nMmAmn
12 divcnv AmAm0
13 12 adantr AMmAm0
14 simpr AMM
15 14 nnzd AMM
16 nnex V
17 16 mptex mAmV
18 eqid M=M
19 eqid nMmAmn=nMmAmn
20 18 19 climmpt MmAmVmAm0nMmAmn0
21 15 17 20 sylancl AMmAm0nMmAmn0
22 13 21 mpbid AMnMmAmn0
23 11 22 eqbrtrd AMnMAn0