Metamath Proof Explorer


Theorem divdenle

Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion divdenle ABdenomABB

Proof

Step Hyp Ref Expression
1 divnumden ABnumerAB=AAgcdBdenomAB=BAgcdB
2 1 simprd ABdenomAB=BAgcdB
3 simpl ABA
4 nnz BB
5 4 adantl ABB
6 nnne0 BB0
7 6 neneqd B¬B=0
8 7 adantl AB¬B=0
9 8 intnand AB¬A=0B=0
10 gcdn0cl AB¬A=0B=0AgcdB
11 3 5 9 10 syl21anc ABAgcdB
12 11 nnge1d AB1AgcdB
13 1red AB1
14 0lt1 0<1
15 14 a1i AB0<1
16 11 nnred ABAgcdB
17 11 nngt0d AB0<AgcdB
18 nnre BB
19 18 adantl ABB
20 nngt0 B0<B
21 20 adantl AB0<B
22 lediv2 10<1AgcdB0<AgcdBB0<B1AgcdBBAgcdBB1
23 13 15 16 17 19 21 22 syl222anc AB1AgcdBBAgcdBB1
24 12 23 mpbid ABBAgcdBB1
25 nncn BB
26 25 adantl ABB
27 26 div1d ABB1=B
28 24 27 breqtrd ABBAgcdBB
29 2 28 eqbrtrd ABdenomABB