| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 |  | 1oex |  | 
						
							| 3 |  | djuex |  | 
						
							| 4 | 1 2 3 | sylancl |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | df1o2 |  | 
						
							| 7 | 6 | xpeq2i |  | 
						
							| 8 |  | 0ex |  | 
						
							| 9 | 2 8 | xpsn |  | 
						
							| 10 | 7 9 | eqtri |  | 
						
							| 11 |  | ssun2 |  | 
						
							| 12 | 10 11 | eqsstrri |  | 
						
							| 13 |  | opex |  | 
						
							| 14 | 13 | snss |  | 
						
							| 15 | 12 14 | mpbir |  | 
						
							| 16 |  | df-dju |  | 
						
							| 17 | 15 16 | eleqtrri |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | difsnen |  | 
						
							| 20 | 4 5 18 19 | syl3anc |  | 
						
							| 21 | 16 | difeq1i |  | 
						
							| 22 |  | xp01disjl |  | 
						
							| 23 |  | disj3 |  | 
						
							| 24 | 22 23 | mpbi |  | 
						
							| 25 |  | difun2 |  | 
						
							| 26 | 10 | difeq2i |  | 
						
							| 27 | 24 25 26 | 3eqtr2i |  | 
						
							| 28 | 21 27 | eqtr4i |  | 
						
							| 29 |  | xpsnen2g |  | 
						
							| 30 | 8 1 29 | sylancr |  | 
						
							| 31 | 28 30 | eqbrtrid |  | 
						
							| 32 |  | entr |  | 
						
							| 33 | 20 31 32 | syl2anc |  |