Metamath Proof Explorer


Theorem dlwwlknondlwlknonf1olem1

Description: Lemma 1 for dlwwlknondlwlknonf1o . (Contributed by AV, 29-May-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Assertion dlwwlknondlwlknonf1olem1 1 st c = N c ClWalks G N 2 2 nd c prefix 1 st c N 2 = 2 nd c N 2

Proof

Step Hyp Ref Expression
1 clwlkwlk c ClWalks G c Walks G
2 wlkcpr c Walks G 1 st c Walks G 2 nd c
3 1 2 sylib c ClWalks G 1 st c Walks G 2 nd c
4 eqid Vtx G = Vtx G
5 4 wlkpwrd 1 st c Walks G 2 nd c 2 nd c Word Vtx G
6 3 5 syl c ClWalks G 2 nd c Word Vtx G
7 6 3ad2ant2 1 st c = N c ClWalks G N 2 2 nd c Word Vtx G
8 eluzge2nn0 N 2 N 0
9 8 3ad2ant3 1 st c = N c ClWalks G N 2 N 0
10 eleq1 1 st c = N 1 st c 0 N 0
11 10 3ad2ant1 1 st c = N c ClWalks G N 2 1 st c 0 N 0
12 9 11 mpbird 1 st c = N c ClWalks G N 2 1 st c 0
13 nn0fz0 1 st c 0 1 st c 0 1 st c
14 12 13 sylib 1 st c = N c ClWalks G N 2 1 st c 0 1 st c
15 fzelp1 1 st c 0 1 st c 1 st c 0 1 st c + 1
16 14 15 syl 1 st c = N c ClWalks G N 2 1 st c 0 1 st c + 1
17 wlklenvp1 1 st c Walks G 2 nd c 2 nd c = 1 st c + 1
18 17 eqcomd 1 st c Walks G 2 nd c 1 st c + 1 = 2 nd c
19 3 18 syl c ClWalks G 1 st c + 1 = 2 nd c
20 19 oveq2d c ClWalks G 0 1 st c + 1 = 0 2 nd c
21 20 eleq2d c ClWalks G 1 st c 0 1 st c + 1 1 st c 0 2 nd c
22 21 3ad2ant2 1 st c = N c ClWalks G N 2 1 st c 0 1 st c + 1 1 st c 0 2 nd c
23 16 22 mpbid 1 st c = N c ClWalks G N 2 1 st c 0 2 nd c
24 2nn 2
25 24 a1i N 2 2
26 eluz2nn N 2 N
27 eluzle N 2 2 N
28 elfz1b 2 1 N 2 N 2 N
29 25 26 27 28 syl3anbrc N 2 2 1 N
30 ubmelfzo 2 1 N N 2 0 ..^ N
31 29 30 syl N 2 N 2 0 ..^ N
32 31 3ad2ant3 1 st c = N c ClWalks G N 2 N 2 0 ..^ N
33 oveq2 1 st c = N 0 ..^ 1 st c = 0 ..^ N
34 33 eleq2d 1 st c = N N 2 0 ..^ 1 st c N 2 0 ..^ N
35 34 3ad2ant1 1 st c = N c ClWalks G N 2 N 2 0 ..^ 1 st c N 2 0 ..^ N
36 32 35 mpbird 1 st c = N c ClWalks G N 2 N 2 0 ..^ 1 st c
37 pfxfv 2 nd c Word Vtx G 1 st c 0 2 nd c N 2 0 ..^ 1 st c 2 nd c prefix 1 st c N 2 = 2 nd c N 2
38 7 23 36 37 syl3anc 1 st c = N c ClWalks G N 2 2 nd c prefix 1 st c N 2 = 2 nd c N 2