Metamath Proof Explorer


Theorem dmarea

Description: The domain of the area function is the set of finitely measurable subsets of RR X. RR . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dmarea A dom area A 2 x A x vol -1 x vol A x 𝐿 1

Proof

Step Hyp Ref Expression
1 itgex vol s x dx V
2 df-area area = s t 𝒫 2 | x t x vol -1 x vol t x 𝐿 1 vol s x dx
3 1 2 dmmpti dom area = t 𝒫 2 | x t x vol -1 x vol t x 𝐿 1
4 3 eleq2i A dom area A t 𝒫 2 | x t x vol -1 x vol t x 𝐿 1
5 imaeq1 t = A t x = A x
6 5 eleq1d t = A t x vol -1 A x vol -1
7 6 ralbidv t = A x t x vol -1 x A x vol -1
8 5 fveq2d t = A vol t x = vol A x
9 8 mpteq2dv t = A x vol t x = x vol A x
10 9 eleq1d t = A x vol t x 𝐿 1 x vol A x 𝐿 1
11 7 10 anbi12d t = A x t x vol -1 x vol t x 𝐿 1 x A x vol -1 x vol A x 𝐿 1
12 11 elrab A t 𝒫 2 | x t x vol -1 x vol t x 𝐿 1 A 𝒫 2 x A x vol -1 x vol A x 𝐿 1
13 reex V
14 13 13 xpex 2 V
15 14 elpw2 A 𝒫 2 A 2
16 15 anbi1i A 𝒫 2 x A x vol -1 x vol A x 𝐿 1 A 2 x A x vol -1 x vol A x 𝐿 1
17 3anass A 2 x A x vol -1 x vol A x 𝐿 1 A 2 x A x vol -1 x vol A x 𝐿 1
18 16 17 bitr4i A 𝒫 2 x A x vol -1 x vol A x 𝐿 1 A 2 x A x vol -1 x vol A x 𝐿 1
19 4 12 18 3bitri A dom area A 2 x A x vol -1 x vol A x 𝐿 1