Metamath Proof Explorer


Theorem dmdi4

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi4 ACBCCCA𝑀*BCBABCBAB

Proof

Step Hyp Ref Expression
1 dmdbr4 ACBCA𝑀*BxCxBABxBAB
2 1 biimpd ACBCA𝑀*BxCxBABxBAB
3 oveq1 x=CxB=CB
4 3 ineq1d x=CxBAB=CBAB
5 3 ineq1d x=CxBA=CBA
6 5 oveq1d x=CxBAB=CBAB
7 4 6 sseq12d x=CxBABxBABCBABCBAB
8 7 rspcv CCxCxBABxBABCBABCBAB
9 2 8 sylan9 ACBCCCA𝑀*BCBABCBAB
10 9 3impa ACBCCCA𝑀*BCBABCBAB