Metamath Proof Explorer


Theorem dmfcoafv

Description: Domains of a function composition, analogous to dmfco . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion dmfcoafv FunGAdomGAdomFGG'''AdomF

Proof

Step Hyp Ref Expression
1 dmfco FunGAdomGAdomFGGAdomF
2 funres FunGFunGA
3 2 anim2i AdomGFunGAdomGFunGA
4 3 ancoms FunGAdomGAdomGFunGA
5 df-dfat GdefAtAAdomGFunGA
6 afvfundmfveq GdefAtAG'''A=GA
7 5 6 sylbir AdomGFunGAG'''A=GA
8 4 7 syl FunGAdomGG'''A=GA
9 8 eqcomd FunGAdomGGA=G'''A
10 9 eleq1d FunGAdomGGAdomFG'''AdomF
11 1 10 bitrd FunGAdomGAdomFGG'''AdomF