Metamath Proof Explorer


Theorem dmrnxp

Description: A Cartesian product is the Cartesian product of its domain and range. (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Assertion dmrnxp R = A × B R = dom R × ran R

Proof

Step Hyp Ref Expression
1 simpl R = A × B ¬ A R = A × B
2 simpr R = A × B ¬ A ¬ A
3 nne ¬ A A =
4 2 3 sylib R = A × B ¬ A A =
5 4 xpeq1d R = A × B ¬ A A × B = × B
6 0xp × B =
7 5 6 eqtrdi R = A × B ¬ A A × B =
8 1 7 eqtrd R = A × B ¬ A R =
9 8 dmeqd R = A × B ¬ A dom R = dom
10 dm0 dom =
11 9 10 eqtrdi R = A × B ¬ A dom R =
12 8 rneqd R = A × B ¬ A ran R = ran
13 rn0 ran =
14 12 13 eqtrdi R = A × B ¬ A ran R =
15 11 14 xpeq12d R = A × B ¬ A dom R × ran R = ×
16 0xp × =
17 15 16 eqtrdi R = A × B ¬ A dom R × ran R =
18 8 17 eqtr4d R = A × B ¬ A R = dom R × ran R
19 simpl R = A × B ¬ B R = A × B
20 simpr R = A × B ¬ B ¬ B
21 nne ¬ B B =
22 20 21 sylib R = A × B ¬ B B =
23 22 xpeq2d R = A × B ¬ B A × B = A ×
24 xp0 A × =
25 23 24 eqtrdi R = A × B ¬ B A × B =
26 19 25 eqtrd R = A × B ¬ B R =
27 26 dmeqd R = A × B ¬ B dom R = dom
28 27 10 eqtrdi R = A × B ¬ B dom R =
29 26 rneqd R = A × B ¬ B ran R = ran
30 29 13 eqtrdi R = A × B ¬ B ran R =
31 28 30 xpeq12d R = A × B ¬ B dom R × ran R = ×
32 31 16 eqtrdi R = A × B ¬ B dom R × ran R =
33 26 32 eqtr4d R = A × B ¬ B R = dom R × ran R
34 simpl R = A × B A B R = A × B
35 34 dmeqd R = A × B A B dom R = dom A × B
36 dmxp B dom A × B = A
37 36 ad2antll R = A × B A B dom A × B = A
38 35 37 eqtrd R = A × B A B dom R = A
39 34 rneqd R = A × B A B ran R = ran A × B
40 rnxp A ran A × B = B
41 40 ad2antrl R = A × B A B ran A × B = B
42 39 41 eqtrd R = A × B A B ran R = B
43 38 42 xpeq12d R = A × B A B dom R × ran R = A × B
44 34 43 eqtr4d R = A × B A B R = dom R × ran R
45 18 33 44 pm2.61dda R = A × B R = dom R × ran R