Metamath Proof Explorer


Theorem doch1

Description: Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses doch1.h H = LHyp K
doch1.u U = DVecH K W
doch1.o ˙ = ocH K W
doch1.v V = Base U
doch1.z 0 ˙ = 0 U
Assertion doch1 K HL W H ˙ V = 0 ˙

Proof

Step Hyp Ref Expression
1 doch1.h H = LHyp K
2 doch1.u U = DVecH K W
3 doch1.o ˙ = ocH K W
4 doch1.v V = Base U
5 doch1.z 0 ˙ = 0 U
6 eqid DIsoH K W = DIsoH K W
7 1 6 2 4 dih1rn K HL W H V ran DIsoH K W
8 eqid oc K = oc K
9 8 1 6 3 dochvalr K HL W H V ran DIsoH K W ˙ V = DIsoH K W oc K DIsoH K W -1 V
10 7 9 mpdan K HL W H ˙ V = DIsoH K W oc K DIsoH K W -1 V
11 eqid 1. K = 1. K
12 1 11 6 2 4 dih1cnv K HL W H DIsoH K W -1 V = 1. K
13 12 fveq2d K HL W H oc K DIsoH K W -1 V = oc K 1. K
14 hlop K HL K OP
15 14 adantr K HL W H K OP
16 eqid 0. K = 0. K
17 16 11 8 opoc1 K OP oc K 1. K = 0. K
18 15 17 syl K HL W H oc K 1. K = 0. K
19 13 18 eqtrd K HL W H oc K DIsoH K W -1 V = 0. K
20 19 fveq2d K HL W H DIsoH K W oc K DIsoH K W -1 V = DIsoH K W 0. K
21 16 1 6 2 5 dih0 K HL W H DIsoH K W 0. K = 0 ˙
22 10 20 21 3eqtrd K HL W H ˙ V = 0 ˙