Metamath Proof Explorer


Theorem dochnel2

Description: A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015)

Ref Expression
Hypotheses dochnoncon.h H=LHypK
dochnoncon.u U=DVecHKW
dochnoncon.s S=LSubSpU
dochnoncon.z 0˙=0U
dochnoncon.o ˙=ocHKW
dochnel2.k φKHLWH
dochnel2.t φTS
dochnel2.x φXT0˙
Assertion dochnel2 φ¬X˙T

Proof

Step Hyp Ref Expression
1 dochnoncon.h H=LHypK
2 dochnoncon.u U=DVecHKW
3 dochnoncon.s S=LSubSpU
4 dochnoncon.z 0˙=0U
5 dochnoncon.o ˙=ocHKW
6 dochnel2.k φKHLWH
7 dochnel2.t φTS
8 dochnel2.x φXT0˙
9 8 eldifbd φ¬X0˙
10 8 eldifad φXT
11 elin XT˙TXTX˙T
12 1 2 3 4 5 dochnoncon KHLWHTST˙T=0˙
13 6 7 12 syl2anc φT˙T=0˙
14 13 eleq2d φXT˙TX0˙
15 11 14 bitr3id φXTX˙TX0˙
16 15 biimpd φXTX˙TX0˙
17 10 16 mpand φX˙TX0˙
18 9 17 mtod φ¬X˙T