Metamath Proof Explorer


Theorem dochsnkr2

Description: Kernel of the explicit functional G determined by a nonzero vector X . Compare the more general lshpkr . (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochsnkr2.h H=LHypK
dochsnkr2.o ˙=ocHKW
dochsnkr2.u U=DVecHKW
dochsnkr2.v V=BaseU
dochsnkr2.z 0˙=0U
dochsnkr2.a +˙=+U
dochsnkr2.t ·˙=U
dochsnkr2.l L=LKerU
dochsnkr2.d D=ScalarU
dochsnkr2.r R=BaseD
dochsnkr2.g G=vVιkR|w˙Xv=w+˙k·˙X
dochsnkr2.k φKHLWH
dochsnkr2.x φXV0˙
Assertion dochsnkr2 φLG=˙X

Proof

Step Hyp Ref Expression
1 dochsnkr2.h H=LHypK
2 dochsnkr2.o ˙=ocHKW
3 dochsnkr2.u U=DVecHKW
4 dochsnkr2.v V=BaseU
5 dochsnkr2.z 0˙=0U
6 dochsnkr2.a +˙=+U
7 dochsnkr2.t ·˙=U
8 dochsnkr2.l L=LKerU
9 dochsnkr2.d D=ScalarU
10 dochsnkr2.r R=BaseD
11 dochsnkr2.g G=vVιkR|w˙Xv=w+˙k·˙X
12 dochsnkr2.k φKHLWH
13 dochsnkr2.x φXV0˙
14 eqid LSpanU=LSpanU
15 eqid LSSumU=LSSumU
16 eqid LSHypU=LSHypU
17 1 3 12 dvhlvec φULVec
18 1 2 3 4 5 16 12 13 dochsnshp φ˙XLSHypU
19 13 eldifad φXV
20 1 2 3 4 5 14 15 12 13 dochexmidat φ˙XLSSumULSpanUX=V
21 4 6 14 15 16 17 18 19 20 9 10 7 11 8 lshpkr φLG=˙X