Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | domneq0.b | |
|
domneq0.t | |
||
domneq0.z | |
||
Assertion | domneq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domneq0.b | |
|
2 | domneq0.t | |
|
3 | domneq0.z | |
|
4 | 3simpc | |
|
5 | 1 2 3 | isdomn | |
6 | 5 | simprbi | |
7 | 6 | 3ad2ant1 | |
8 | oveq1 | |
|
9 | 8 | eqeq1d | |
10 | eqeq1 | |
|
11 | 10 | orbi1d | |
12 | 9 11 | imbi12d | |
13 | oveq2 | |
|
14 | 13 | eqeq1d | |
15 | eqeq1 | |
|
16 | 15 | orbi2d | |
17 | 14 16 | imbi12d | |
18 | 12 17 | rspc2va | |
19 | 4 7 18 | syl2anc | |
20 | domnring | |
|
21 | 20 | 3ad2ant1 | |
22 | simp3 | |
|
23 | 1 2 3 | ringlz | |
24 | 21 22 23 | syl2anc | |
25 | oveq1 | |
|
26 | 25 | eqeq1d | |
27 | 24 26 | syl5ibrcom | |
28 | simp2 | |
|
29 | 1 2 3 | ringrz | |
30 | 21 28 29 | syl2anc | |
31 | oveq2 | |
|
32 | 31 | eqeq1d | |
33 | 30 32 | syl5ibrcom | |
34 | 27 33 | jaod | |
35 | 19 34 | impbid | |