Metamath Proof Explorer


Theorem domneq0

Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses domneq0.b B=BaseR
domneq0.t ·˙=R
domneq0.z 0˙=0R
Assertion domneq0 RDomnXBYBX·˙Y=0˙X=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 domneq0.b B=BaseR
2 domneq0.t ·˙=R
3 domneq0.z 0˙=0R
4 3simpc RDomnXBYBXBYB
5 1 2 3 isdomn RDomnRNzRingxByBx·˙y=0˙x=0˙y=0˙
6 5 simprbi RDomnxByBx·˙y=0˙x=0˙y=0˙
7 6 3ad2ant1 RDomnXBYBxByBx·˙y=0˙x=0˙y=0˙
8 oveq1 x=Xx·˙y=X·˙y
9 8 eqeq1d x=Xx·˙y=0˙X·˙y=0˙
10 eqeq1 x=Xx=0˙X=0˙
11 10 orbi1d x=Xx=0˙y=0˙X=0˙y=0˙
12 9 11 imbi12d x=Xx·˙y=0˙x=0˙y=0˙X·˙y=0˙X=0˙y=0˙
13 oveq2 y=YX·˙y=X·˙Y
14 13 eqeq1d y=YX·˙y=0˙X·˙Y=0˙
15 eqeq1 y=Yy=0˙Y=0˙
16 15 orbi2d y=YX=0˙y=0˙X=0˙Y=0˙
17 14 16 imbi12d y=YX·˙y=0˙X=0˙y=0˙X·˙Y=0˙X=0˙Y=0˙
18 12 17 rspc2va XBYBxByBx·˙y=0˙x=0˙y=0˙X·˙Y=0˙X=0˙Y=0˙
19 4 7 18 syl2anc RDomnXBYBX·˙Y=0˙X=0˙Y=0˙
20 domnring RDomnRRing
21 20 3ad2ant1 RDomnXBYBRRing
22 simp3 RDomnXBYBYB
23 1 2 3 ringlz RRingYB0˙·˙Y=0˙
24 21 22 23 syl2anc RDomnXBYB0˙·˙Y=0˙
25 oveq1 X=0˙X·˙Y=0˙·˙Y
26 25 eqeq1d X=0˙X·˙Y=0˙0˙·˙Y=0˙
27 24 26 syl5ibrcom RDomnXBYBX=0˙X·˙Y=0˙
28 simp2 RDomnXBYBXB
29 1 2 3 ringrz RRingXBX·˙0˙=0˙
30 21 28 29 syl2anc RDomnXBYBX·˙0˙=0˙
31 oveq2 Y=0˙X·˙Y=X·˙0˙
32 31 eqeq1d Y=0˙X·˙Y=0˙X·˙0˙=0˙
33 30 32 syl5ibrcom RDomnXBYBY=0˙X·˙Y=0˙
34 27 33 jaod RDomnXBYBX=0˙Y=0˙X·˙Y=0˙
35 19 34 impbid RDomnXBYBX·˙Y=0˙X=0˙Y=0˙