| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnpropd.1 |
|
| 2 |
|
domnpropd.2 |
|
| 3 |
|
domnpropd.3 |
|
| 4 |
|
domnpropd.4 |
|
| 5 |
1 2 3 4
|
nzrpropd |
|
| 6 |
1 2
|
eqtr3d |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpll |
|
| 9 |
1
|
eleq2d |
|
| 10 |
9
|
biimpar |
|
| 11 |
10
|
adantr |
|
| 12 |
1
|
eleq2d |
|
| 13 |
12
|
biimpar |
|
| 14 |
13
|
adantlr |
|
| 15 |
8 11 14 4
|
syl12anc |
|
| 16 |
1 2 3
|
grpidpropd |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
15 17
|
eqeq12d |
|
| 19 |
17
|
eqeq2d |
|
| 20 |
17
|
eqeq2d |
|
| 21 |
19 20
|
orbi12d |
|
| 22 |
18 21
|
imbi12d |
|
| 23 |
7 22
|
raleqbidva |
|
| 24 |
6 23
|
raleqbidva |
|
| 25 |
5 24
|
anbi12d |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
26 27 28
|
isdomn |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
30 31 32
|
isdomn |
|
| 34 |
25 29 33
|
3bitr4g |
|