Metamath Proof Explorer


Theorem domsdomtrfi

Description: Transitivity of dominance and strict dominance when A is finite, proved without using the Axiom of Power Sets (unlike domsdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)

Ref Expression
Assertion domsdomtrfi AFinABBCAC

Proof

Step Hyp Ref Expression
1 sdomdom BCBC
2 domtrfil AFinABBCAC
3 1 2 syl3an3 AFinABBCAC
4 ensymfib AFinACCA
5 4 biimpa AFinACCA
6 5 3adant3 AFinACABCA
7 enfii AFinCACFin
8 7 3adant3 AFinCAABCFin
9 endom CACA
10 domtrfi AFinCAABCB
11 9 10 syl3an2 AFinCAABCB
12 8 11 jca AFinCAABCFinCB
13 6 12 syld3an2 AFinACABCFinCB
14 domnsymfi CFinCB¬BC
15 13 14 syl AFinACAB¬BC
16 15 3com23 AFinABAC¬BC
17 16 3expia AFinABAC¬BC
18 17 con2d AFinABBC¬AC
19 18 3impia AFinABBC¬AC
20 brsdom ACAC¬AC
21 3 19 20 sylanbrc AFinABBCAC