Metamath Proof Explorer


Theorem domsdomtrfi

Description: Transitivity of dominance and strict dominance when A is finite, proved without using the Axiom of Power Sets (unlike domsdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)

Ref Expression
Assertion domsdomtrfi A Fin A B B C A C

Proof

Step Hyp Ref Expression
1 sdomdom B C B C
2 domtrfil A Fin A B B C A C
3 1 2 syl3an3 A Fin A B B C A C
4 ensymfib A Fin A C C A
5 4 biimpa A Fin A C C A
6 5 3adant3 A Fin A C A B C A
7 enfii A Fin C A C Fin
8 7 3adant3 A Fin C A A B C Fin
9 endom C A C A
10 domtrfi A Fin C A A B C B
11 9 10 syl3an2 A Fin C A A B C B
12 8 11 jca A Fin C A A B C Fin C B
13 6 12 syld3an2 A Fin A C A B C Fin C B
14 domnsymfi C Fin C B ¬ B C
15 13 14 syl A Fin A C A B ¬ B C
16 15 3com23 A Fin A B A C ¬ B C
17 16 3expia A Fin A B A C ¬ B C
18 17 con2d A Fin A B B C ¬ A C
19 18 3impia A Fin A B B C ¬ A C
20 brsdom A C A C ¬ A C
21 3 19 20 sylanbrc A Fin A B B C A C