Metamath Proof Explorer


Theorem domunsn

Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion domunsn ABACB

Proof

Step Hyp Ref Expression
1 sdom0 ¬A
2 breq2 B=ABA
3 1 2 mtbiri B=¬AB
4 3 con2i AB¬B=
5 neq0 ¬B=zzB
6 4 5 sylib ABzzB
7 domdifsn ABABz
8 7 adantr ABzBABz
9 en2sn CVzVCz
10 9 elvd CVCz
11 endom CzCz
12 10 11 syl CVCz
13 snprc ¬CVC=
14 13 biimpi ¬CVC=
15 vsnex zV
16 15 0dom z
17 14 16 eqbrtrdi ¬CVCz
18 12 17 pm2.61i Cz
19 disjdifr Bzz=
20 undom ABzCzBzz=ACBzz
21 19 20 mpan2 ABzCzACBzz
22 8 18 21 sylancl ABzBACBzz
23 uncom Bzz=zBz
24 simpr ABzBzB
25 24 snssd ABzBzB
26 undif zBzBz=B
27 25 26 sylib ABzBzBz=B
28 23 27 eqtrid ABzBBzz=B
29 22 28 breqtrd ABzBACB
30 6 29 exlimddv ABACB