Metamath Proof Explorer


Theorem domunsn

Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion domunsn ( 𝐴𝐵 → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 )

Proof

Step Hyp Ref Expression
1 sdom0 ¬ 𝐴 ≺ ∅
2 breq2 ( 𝐵 = ∅ → ( 𝐴𝐵𝐴 ≺ ∅ ) )
3 1 2 mtbiri ( 𝐵 = ∅ → ¬ 𝐴𝐵 )
4 3 con2i ( 𝐴𝐵 → ¬ 𝐵 = ∅ )
5 neq0 ( ¬ 𝐵 = ∅ ↔ ∃ 𝑧 𝑧𝐵 )
6 4 5 sylib ( 𝐴𝐵 → ∃ 𝑧 𝑧𝐵 )
7 domdifsn ( 𝐴𝐵𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) )
8 7 adantr ( ( 𝐴𝐵𝑧𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) )
9 en2sn ( ( 𝐶 ∈ V ∧ 𝑧 ∈ V ) → { 𝐶 } ≈ { 𝑧 } )
10 9 elvd ( 𝐶 ∈ V → { 𝐶 } ≈ { 𝑧 } )
11 endom ( { 𝐶 } ≈ { 𝑧 } → { 𝐶 } ≼ { 𝑧 } )
12 10 11 syl ( 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } )
13 snprc ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ )
14 13 biimpi ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ )
15 snex { 𝑧 } ∈ V
16 15 0dom ∅ ≼ { 𝑧 }
17 14 16 eqbrtrdi ( ¬ 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } )
18 12 17 pm2.61i { 𝐶 } ≼ { 𝑧 }
19 incom ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ( { 𝑧 } ∩ ( 𝐵 ∖ { 𝑧 } ) )
20 disjdif ( { 𝑧 } ∩ ( 𝐵 ∖ { 𝑧 } ) ) = ∅
21 19 20 eqtri ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅
22 undom ( ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) ∧ ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) )
23 21 22 mpan2 ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) )
24 8 18 23 sylancl ( ( 𝐴𝐵𝑧𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) )
25 uncom ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) )
26 simpr ( ( 𝐴𝐵𝑧𝐵 ) → 𝑧𝐵 )
27 26 snssd ( ( 𝐴𝐵𝑧𝐵 ) → { 𝑧 } ⊆ 𝐵 )
28 undif ( { 𝑧 } ⊆ 𝐵 ↔ ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 )
29 27 28 sylib ( ( 𝐴𝐵𝑧𝐵 ) → ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 )
30 25 29 syl5eq ( ( 𝐴𝐵𝑧𝐵 ) → ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝐵 )
31 24 30 breqtrd ( ( 𝐴𝐵𝑧𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 )
32 6 31 exlimddv ( 𝐴𝐵 → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 )