Metamath Proof Explorer


Theorem dpjlid

Description: The X -th index projection acts as the identity on elements of the X -th factor. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjlid.3 φXI
dpjlid.4 φASX
Assertion dpjlid φPXA=A

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjlid.3 φXI
5 dpjlid.4 φASX
6 eqid proj1G=proj1G
7 1 2 3 6 4 dpjval φPX=SXproj1GGDProdSIX
8 7 fveq1d φPXA=SXproj1GGDProdSIXA
9 eqid +G=+G
10 eqid LSSumG=LSSumG
11 eqid 0G=0G
12 eqid CntzG=CntzG
13 1 2 dprdf2 φS:ISubGrpG
14 13 4 ffvelcdmd φSXSubGrpG
15 difssd φIXI
16 1 2 15 dprdres φGdomDProdSIXGDProdSIXGDProdS
17 16 simpld φGdomDProdSIX
18 dprdsubg GdomDProdSIXGDProdSIXSubGrpG
19 17 18 syl φGDProdSIXSubGrpG
20 1 2 4 11 dpjdisj φSXGDProdSIX=0G
21 1 2 4 12 dpjcntz φSXCntzGGDProdSIX
22 9 10 11 12 14 19 20 21 6 pj1lid φASXSXproj1GGDProdSIXA=A
23 5 22 mpdan φSXproj1GGDProdSIXA=A
24 8 23 eqtrd φPXA=A