Metamath Proof Explorer


Theorem drnglpir

Description: Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion drnglpir RDivRingRLPIR

Proof

Step Hyp Ref Expression
1 drngring RDivRingRRing
2 eqid BaseR=BaseR
3 eqid 0R=0R
4 eqid LIdealR=LIdealR
5 2 3 4 drngnidl RDivRingLIdealR=0RBaseR
6 eqid LPIdealR=LPIdealR
7 6 3 lpi0 RRing0RLPIdealR
8 6 2 lpi1 RRingBaseRLPIdealR
9 7 8 prssd RRing0RBaseRLPIdealR
10 1 9 syl RDivRing0RBaseRLPIdealR
11 5 10 eqsstrd RDivRingLIdealRLPIdealR
12 6 4 islpir2 RLPIRRRingLIdealRLPIdealR
13 1 11 12 sylanbrc RDivRingRLPIR