Metamath Proof Explorer


Theorem drngmulcan2ad

Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drngmulcanad.b B = Base R
drngmulcanad.0 0 ˙ = 0 R
drngmulcanad.t · ˙ = R
drngmulcanad.r φ R DivRing
drngmulcanad.x φ X B
drngmulcanad.y φ Y B
drngmulcanad.z φ Z B
drngmulcanad.1 φ Z 0 ˙
drngmulcan2ad.2 φ X · ˙ Z = Y · ˙ Z
Assertion drngmulcan2ad φ X = Y

Proof

Step Hyp Ref Expression
1 drngmulcanad.b B = Base R
2 drngmulcanad.0 0 ˙ = 0 R
3 drngmulcanad.t · ˙ = R
4 drngmulcanad.r φ R DivRing
5 drngmulcanad.x φ X B
6 drngmulcanad.y φ Y B
7 drngmulcanad.z φ Z B
8 drngmulcanad.1 φ Z 0 ˙
9 drngmulcan2ad.2 φ X · ˙ Z = Y · ˙ Z
10 9 oveq1d φ X · ˙ Z · ˙ inv r R Z = Y · ˙ Z · ˙ inv r R Z
11 4 drngringd φ R Ring
12 eqid inv r R = inv r R
13 1 2 12 4 7 8 drnginvrcld φ inv r R Z B
14 1 3 11 5 7 13 ringassd φ X · ˙ Z · ˙ inv r R Z = X · ˙ Z · ˙ inv r R Z
15 eqid 1 R = 1 R
16 1 2 3 15 12 4 7 8 drnginvrrd φ Z · ˙ inv r R Z = 1 R
17 16 oveq2d φ X · ˙ Z · ˙ inv r R Z = X · ˙ 1 R
18 1 3 15 11 5 ringridmd φ X · ˙ 1 R = X
19 14 17 18 3eqtrd φ X · ˙ Z · ˙ inv r R Z = X
20 1 3 11 6 7 13 ringassd φ Y · ˙ Z · ˙ inv r R Z = Y · ˙ Z · ˙ inv r R Z
21 16 oveq2d φ Y · ˙ Z · ˙ inv r R Z = Y · ˙ 1 R
22 1 3 15 11 6 ringridmd φ Y · ˙ 1 R = Y
23 20 21 22 3eqtrd φ Y · ˙ Z · ˙ inv r R Z = Y
24 10 19 23 3eqtr3d φ X = Y