Metamath Proof Explorer


Theorem dssmapclsntr

Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 . (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses dssmapclsntr.x X = J
dssmapclsntr.k K = cls J
dssmapclsntr.i I = int J
dssmapclsntr.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapclsntr.d D = O X
Assertion dssmapclsntr J Top K = D I

Proof

Step Hyp Ref Expression
1 dssmapclsntr.x X = J
2 dssmapclsntr.k K = cls J
3 dssmapclsntr.i I = int J
4 dssmapclsntr.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
5 dssmapclsntr.d D = O X
6 1 2 3 4 5 dssmapntrcls J Top I = D K
7 6 eqcomd J Top D K = I
8 1 topopn J Top X J
9 4 5 8 dssmapf1od J Top D : 𝒫 X 𝒫 X 1-1 onto 𝒫 X 𝒫 X
10 1 2 clselmap J Top K 𝒫 X 𝒫 X
11 f1ocnvfv D : 𝒫 X 𝒫 X 1-1 onto 𝒫 X 𝒫 X K 𝒫 X 𝒫 X D K = I D -1 I = K
12 9 10 11 syl2anc J Top D K = I D -1 I = K
13 7 12 mpd J Top D -1 I = K
14 4 5 8 dssmapnvod J Top D -1 = D
15 14 fveq1d J Top D -1 I = D I
16 13 15 eqtr3d J Top K = D I