Metamath Proof Explorer


Theorem dstfrvinc

Description: A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
dstfrv.3 φF=xPXRV/cx
dstfrvinc.1 φA
dstfrvinc.2 φB
dstfrvinc.3 φAB
Assertion dstfrvinc φFAFB

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 dstfrv.3 φF=xPXRV/cx
4 dstfrvinc.1 φA
5 dstfrvinc.2 φB
6 dstfrvinc.3 φAB
7 domprobmeas PProbPmeasuresdomP
8 1 7 syl φPmeasuresdomP
9 1 2 4 orvclteel φXRV/cAdomP
10 1 2 5 orvclteel φXRV/cBdomP
11 1 2 4 5 6 orvclteinc φXRV/cAXRV/cB
12 8 9 10 11 measssd φPXRV/cAPXRV/cB
13 simpr φx=Ax=A
14 13 oveq2d φx=AXRV/cx=XRV/cA
15 14 fveq2d φx=APXRV/cx=PXRV/cA
16 1 9 probvalrnd φPXRV/cA
17 3 15 4 16 fvmptd φFA=PXRV/cA
18 simpr φx=Bx=B
19 18 oveq2d φx=BXRV/cx=XRV/cB
20 19 fveq2d φx=BPXRV/cx=PXRV/cB
21 1 10 probvalrnd φPXRV/cB
22 3 20 5 21 fvmptd φFB=PXRV/cB
23 12 17 22 3brtr4d φFAFB