Metamath Proof Explorer


Theorem dstfrvinc

Description: A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φ P Prob
dstfrv.2 φ X RndVar P
dstfrv.3 φ F = x P X RV/c x
dstfrvinc.1 φ A
dstfrvinc.2 φ B
dstfrvinc.3 φ A B
Assertion dstfrvinc φ F A F B

Proof

Step Hyp Ref Expression
1 dstfrv.1 φ P Prob
2 dstfrv.2 φ X RndVar P
3 dstfrv.3 φ F = x P X RV/c x
4 dstfrvinc.1 φ A
5 dstfrvinc.2 φ B
6 dstfrvinc.3 φ A B
7 domprobmeas P Prob P measures dom P
8 1 7 syl φ P measures dom P
9 1 2 4 orvclteel φ X RV/c A dom P
10 1 2 5 orvclteel φ X RV/c B dom P
11 1 2 4 5 6 orvclteinc φ X RV/c A X RV/c B
12 8 9 10 11 measssd φ P X RV/c A P X RV/c B
13 simpr φ x = A x = A
14 13 oveq2d φ x = A X RV/c x = X RV/c A
15 14 fveq2d φ x = A P X RV/c x = P X RV/c A
16 1 9 probvalrnd φ P X RV/c A
17 3 15 4 16 fvmptd φ F A = P X RV/c A
18 simpr φ x = B x = B
19 18 oveq2d φ x = B X RV/c x = X RV/c B
20 19 fveq2d φ x = B P X RV/c x = P X RV/c B
21 1 10 probvalrnd φ P X RV/c B
22 3 20 5 21 fvmptd φ F B = P X RV/c B
23 12 17 22 3brtr4d φ F A F B