Metamath Proof Explorer


Theorem dvafvsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafvsca.h H=LHypK
dvafvsca.t T=LTrnKW
dvafvsca.e E=TEndoKW
dvafvsca.u U=DVecAKW
dvafvsca.s ·˙=U
Assertion dvafvsca KVWH·˙=sE,fTsf

Proof

Step Hyp Ref Expression
1 dvafvsca.h H=LHypK
2 dvafvsca.t T=LTrnKW
3 dvafvsca.e E=TEndoKW
4 dvafvsca.u U=DVecAKW
5 dvafvsca.s ·˙=U
6 eqid EDRingKW=EDRingKW
7 1 2 3 6 4 dvaset KVWHU=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf
8 7 fveq2d KVWHU=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf
9 3 fvexi EV
10 2 fvexi TV
11 9 10 mpoex sE,fTsfV
12 eqid BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf
13 12 lmodvsca sE,fTsfVsE,fTsf=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf
14 11 13 ax-mp sE,fTsf=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsE,fTsf
15 8 5 14 3eqtr4g KVWH·˙=sE,fTsf