Metamath Proof Explorer


Theorem dvdsgcdb

Description: Biconditional form of dvdsgcd . (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dvdsgcdb KMNKMKNKMgcdN

Proof

Step Hyp Ref Expression
1 dvdsgcd KMNKMKNKMgcdN
2 gcddvds MNMgcdNMMgcdNN
3 2 simpld MNMgcdNM
4 3 3adant1 KMNMgcdNM
5 simp1 KMNK
6 gcdcl MNMgcdN0
7 6 nn0zd MNMgcdN
8 7 3adant1 KMNMgcdN
9 simp2 KMNM
10 dvdstr KMgcdNMKMgcdNMgcdNMKM
11 5 8 9 10 syl3anc KMNKMgcdNMgcdNMKM
12 4 11 mpan2d KMNKMgcdNKM
13 2 simprd MNMgcdNN
14 13 3adant1 KMNMgcdNN
15 dvdstr KMgcdNNKMgcdNMgcdNNKN
16 8 15 syld3an2 KMNKMgcdNMgcdNNKN
17 14 16 mpan2d KMNKMgcdNKN
18 12 17 jcad KMNKMgcdNKMKN
19 1 18 impbid KMNKMKNKMgcdN