Metamath Proof Explorer


Theorem dvdslcm

Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion dvdslcm MNMMlcmNNMlcmN

Proof

Step Hyp Ref Expression
1 dvds0 MM0
2 1 ad2antrr MNM=0N=0M0
3 oveq1 M=0MlcmN=0lcmN
4 0z 0
5 lcmcom N0Nlcm0=0lcmN
6 4 5 mpan2 NNlcm0=0lcmN
7 lcm0val NNlcm0=0
8 6 7 eqtr3d N0lcmN=0
9 3 8 sylan9eqr NM=0MlcmN=0
10 9 adantll MNM=0MlcmN=0
11 oveq2 N=0MlcmN=Mlcm0
12 lcm0val MMlcm0=0
13 11 12 sylan9eqr MN=0MlcmN=0
14 13 adantlr MNN=0MlcmN=0
15 10 14 jaodan MNM=0N=0MlcmN=0
16 2 15 breqtrrd MNM=0N=0MMlcmN
17 dvds0 NN0
18 17 ad2antlr MNM=0N=0N0
19 18 15 breqtrrd MNM=0N=0NMlcmN
20 16 19 jca MNM=0N=0MMlcmNNMlcmN
21 lcmcllem MN¬M=0N=0MlcmNn|MnNn
22 lcmn0cl MN¬M=0N=0MlcmN
23 breq2 n=MlcmNMnMMlcmN
24 breq2 n=MlcmNNnNMlcmN
25 23 24 anbi12d n=MlcmNMnNnMMlcmNNMlcmN
26 25 elrab3 MlcmNMlcmNn|MnNnMMlcmNNMlcmN
27 22 26 syl MN¬M=0N=0MlcmNn|MnNnMMlcmNNMlcmN
28 21 27 mpbid MN¬M=0N=0MMlcmNNMlcmN
29 20 28 pm2.61dan MNMMlcmNNMlcmN