Metamath Proof Explorer


Theorem dvdsn1add

Description: If K divides N but K does not divide M , then K does not divide ( M + N ) . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion dvdsn1add KMN¬KMKN¬KM+N

Proof

Step Hyp Ref Expression
1 simp1 KMNK
2 zaddcl MNM+N
3 2 3adant1 KMNM+N
4 simp3 KMNN
5 1 3 4 3jca KMNKM+NN
6 5 ad2antrr KMNKNKM+NKM+NN
7 pm3.22 KNKM+NKM+NKN
8 7 adantll KMNKNKM+NKM+NKN
9 dvds2sub KM+NNKM+NKNKM+N-N
10 6 8 9 sylc KMNKNKM+NKM+N-N
11 zcn MM
12 11 3ad2ant2 KMNM
13 12 ad2antrr KMNKNKM+NM
14 4 zcnd KMNN
15 14 ad2antrr KMNKNKM+NN
16 13 15 pncand KMNKNKM+NM+N-N=M
17 10 16 breqtrd KMNKNKM+NKM
18 17 adantlrl KMN¬KMKNKM+NKM
19 simplrl KMN¬KMKNKM+N¬KM
20 18 19 pm2.65da KMN¬KMKN¬KM+N
21 20 ex KMN¬KMKN¬KM+N