Metamath Proof Explorer


Theorem dvhfplusr

Description: Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhfplusr.h H=LHypK
dvhfplusr.t T=LTrnKW
dvhfplusr.e E=TEndoKW
dvhfplusr.u U=DVecHKW
dvhfplusr.f F=ScalarU
dvhfplusr.p +˙=sE,tEfTsftf
dvhfplusr.s ˙=+F
Assertion dvhfplusr KVWH˙=+˙

Proof

Step Hyp Ref Expression
1 dvhfplusr.h H=LHypK
2 dvhfplusr.t T=LTrnKW
3 dvhfplusr.e E=TEndoKW
4 dvhfplusr.u U=DVecHKW
5 dvhfplusr.f F=ScalarU
6 dvhfplusr.p +˙=sE,tEfTsftf
7 dvhfplusr.s ˙=+F
8 eqid EDRingKW=EDRingKW
9 1 8 4 5 dvhsca KVWHF=EDRingKW
10 9 fveq2d KVWH+F=+EDRingKW
11 eqid +EDRingKW=+EDRingKW
12 1 2 3 8 11 erngfplus KVWH+EDRingKW=sE,tEfTsftf
13 10 12 eqtrd KVWH+F=sE,tEfTsftf
14 13 7 6 3eqtr4g KVWH˙=+˙