Metamath Proof Explorer


Theorem dvmptim

Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvmptcj.a φxXA
dvmptcj.b φxXBV
dvmptcj.da φdxXAdx=xXB
Assertion dvmptim φdxXAdx=xXB

Proof

Step Hyp Ref Expression
1 dvmptcj.a φxXA
2 dvmptcj.b φxXBV
3 dvmptcj.da φdxXAdx=xXB
4 reelprrecn
5 4 a1i φ
6 1 cjcld φxXA
7 1 6 subcld φxXAA
8 5 1 2 3 dvmptcl φxXB
9 8 cjcld φxXB
10 8 9 subcld φxXBB
11 1 2 3 dvmptcj φdxXAdx=xXB
12 5 1 2 3 6 9 11 dvmptsub φdxXAAdx=xXBB
13 2mulicn 2i
14 2muline0 2i0
15 13 14 reccli 12i
16 15 a1i φ12i
17 5 7 10 12 16 dvmptcmul φdxX12iAAdx=xX12iBB
18 imval2 AA=AA2i
19 1 18 syl φxXA=AA2i
20 divrec2 AA2i2i0AA2i=12iAA
21 13 14 20 mp3an23 AAAA2i=12iAA
22 7 21 syl φxXAA2i=12iAA
23 19 22 eqtrd φxXA=12iAA
24 23 mpteq2dva φxXA=xX12iAA
25 24 oveq2d φdxXAdx=dxX12iAAdx
26 imval2 BB=BB2i
27 8 26 syl φxXB=BB2i
28 divrec2 BB2i2i0BB2i=12iBB
29 13 14 28 mp3an23 BBBB2i=12iBB
30 10 29 syl φxXBB2i=12iBB
31 27 30 eqtrd φxXB=12iBB
32 31 mpteq2dva φxXB=xX12iBB
33 17 25 32 3eqtr4d φdxXAdx=xXB