Metamath Proof Explorer


Theorem ee7.2aOLD

Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as A mod B . Here, just one subtraction step is proved to preserve the gcdOLD . The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ee7.2aOLD ABA<BgcdOLDAB=gcdOLDABA

Proof

Step Hyp Ref Expression
1 nndivsub ABxAxA<BBxBAx
2 1 exp32 ABxAxA<BBxBAx
3 2 com23 ABxA<BAxBxBAx
4 3 3expia ABxA<BAxBxBAx
5 4 com23 ABA<BxAxBxBAx
6 5 imp ABA<BxAxBxBAx
7 6 imp ABA<BxAxBxBAx
8 7 pm5.32d ABA<BxAxBxAxBAx
9 8 rabbidva ABA<Bx|AxBx=x|AxBAx
10 9 supeq1d ABA<Bsupx|AxBx<=supx|AxBAx<
11 df-gcdOLD gcdOLDAB=supx|AxBx<
12 df-gcdOLD gcdOLDABA=supx|AxBAx<
13 10 11 12 3eqtr4g ABA<BgcdOLDAB=gcdOLDABA
14 13 ex ABA<BgcdOLDAB=gcdOLDABA