Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
|
2 |
|
simpll |
|
3 |
|
simprl |
|
4 |
|
eengbas |
|
5 |
4
|
adantr |
|
6 |
3 5
|
eleqtrrd |
|
7 |
6
|
adantr |
|
8 |
|
simprr |
|
9 |
8 5
|
eleqtrrd |
|
10 |
9
|
adantr |
|
11 |
3
|
adantr |
|
12 |
8
|
adantr |
|
13 |
|
simpr1 |
|
14 |
|
simpr3 |
|
15 |
4
|
adantr |
|
16 |
14 15
|
eleqtrrd |
|
17 |
2 11 12 13 16
|
syl13anc |
|
18 |
|
simpr2 |
|
19 |
4
|
ad2antrr |
|
20 |
18 19
|
eleqtrrd |
|
21 |
|
simpr3 |
|
22 |
21 19
|
eleqtrrd |
|
23 |
|
axeuclid |
|
24 |
2 7 10 17 20 22 23
|
syl132anc |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
2 25 26 11 21 18
|
ebtwntg |
|
28 |
2 25 26 12 13 18
|
ebtwntg |
|
29 |
27 28
|
3anbi12d |
|
30 |
19
|
adantr |
|
31 |
2
|
ad2antrr |
|
32 |
11
|
ad2antrr |
|
33 |
|
simpr |
|
34 |
33 30
|
eleqtrd |
|
35 |
34
|
adantr |
|
36 |
12
|
ad2antrr |
|
37 |
31 25 26 32 35 36
|
ebtwntg |
|
38 |
|
simpr |
|
39 |
19
|
ad2antrr |
|
40 |
38 39
|
eleqtrd |
|
41 |
13
|
ad2antrr |
|
42 |
31 25 26 32 40 41
|
ebtwntg |
|
43 |
21
|
ad2antrr |
|
44 |
31 25 26 35 40 43
|
ebtwntg |
|
45 |
37 42 44
|
3anbi123d |
|
46 |
30 45
|
rexeqbidva |
|
47 |
19 46
|
rexeqbidva |
|
48 |
24 29 47
|
3imtr3d |
|
49 |
48
|
ralrimivvva |
|
50 |
49
|
ralrimivva |
|
51 |
|
eqid |
|
52 |
25 51 26
|
istrkge |
|
53 |
1 50 52
|
sylanbrc |
|