| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvexd |
|
| 2 |
|
simpll |
|
| 3 |
|
simprl |
|
| 4 |
|
eengbas |
|
| 5 |
4
|
adantr |
|
| 6 |
3 5
|
eleqtrrd |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simprr |
|
| 9 |
8 5
|
eleqtrrd |
|
| 10 |
9
|
adantr |
|
| 11 |
3
|
adantr |
|
| 12 |
8
|
adantr |
|
| 13 |
|
simpr1 |
|
| 14 |
|
simpr3 |
|
| 15 |
4
|
adantr |
|
| 16 |
14 15
|
eleqtrrd |
|
| 17 |
2 11 12 13 16
|
syl13anc |
|
| 18 |
|
simpr2 |
|
| 19 |
4
|
ad2antrr |
|
| 20 |
18 19
|
eleqtrrd |
|
| 21 |
|
simpr3 |
|
| 22 |
21 19
|
eleqtrrd |
|
| 23 |
|
axeuclid |
|
| 24 |
2 7 10 17 20 22 23
|
syl132anc |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
2 25 26 11 21 18
|
ebtwntg |
|
| 28 |
2 25 26 12 13 18
|
ebtwntg |
|
| 29 |
27 28
|
3anbi12d |
|
| 30 |
19
|
adantr |
|
| 31 |
2
|
ad2antrr |
|
| 32 |
11
|
ad2antrr |
|
| 33 |
|
simpr |
|
| 34 |
33 30
|
eleqtrd |
|
| 35 |
34
|
adantr |
|
| 36 |
12
|
ad2antrr |
|
| 37 |
31 25 26 32 35 36
|
ebtwntg |
|
| 38 |
|
simpr |
|
| 39 |
19
|
ad2antrr |
|
| 40 |
38 39
|
eleqtrd |
|
| 41 |
13
|
ad2antrr |
|
| 42 |
31 25 26 32 40 41
|
ebtwntg |
|
| 43 |
21
|
ad2antrr |
|
| 44 |
31 25 26 35 40 43
|
ebtwntg |
|
| 45 |
37 42 44
|
3anbi123d |
|
| 46 |
30 45
|
rexeqbidva |
|
| 47 |
19 46
|
rexeqbidva |
|
| 48 |
24 29 47
|
3imtr3d |
|
| 49 |
48
|
ralrimivvva |
|
| 50 |
49
|
ralrimivva |
|
| 51 |
|
eqid |
|
| 52 |
25 51 26
|
istrkge |
|
| 53 |
1 50 52
|
sylanbrc |
|