Metamath Proof Explorer


Theorem efgredlemb

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
efgredlemb.k K=A-1-1
efgredlemb.l L=B-1-1
efgredlemb.p φP0AK
efgredlemb.q φQ0BL
efgredlemb.u φUI×2𝑜
efgredlemb.v φVI×2𝑜
efgredlemb.6 φSA=PTAKU
efgredlemb.7 φSB=QTBLV
efgredlemb.8 φ¬AK=BL
Assertion efgredlemb ¬φ

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 efgredlemb.k K=A-1-1
13 efgredlemb.l L=B-1-1
14 efgredlemb.p φP0AK
15 efgredlemb.q φQ0BL
16 efgredlemb.u φUI×2𝑜
17 efgredlemb.v φVI×2𝑜
18 efgredlemb.6 φSA=PTAKU
19 efgredlemb.7 φSB=QTBLV
20 efgredlemb.8 φ¬AK=BL
21 fveq2 SA=SBSA=SB
22 21 breq2d SA=SBSa<SASa<SB
23 22 imbi1d SA=SBSa<SASa=Sba0=b0Sa<SBSa=Sba0=b0
24 23 2ralbidv SA=SBadomSbdomSSa<SASa=Sba0=b0adomSbdomSSa<SBSa=Sba0=b0
25 10 24 syl φadomSbdomSSa<SASa=Sba0=b0adomSbdomSSa<SBSa=Sba0=b0
26 7 25 mpbid φadomSbdomSSa<SBSa=Sba0=b0
27 10 eqcomd φSB=SA
28 eqcom A0=B0B0=A0
29 11 28 sylnib φ¬B0=A0
30 eqcom AK=BLBL=AK
31 20 30 sylnib φ¬BL=AK
32 1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31 efgredlemc φQPB0=A0
33 32 28 syl6ibr φQPA0=B0
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 efgredlemc φPQA0=B0
35 14 elfzelzd φP
36 15 elfzelzd φQ
37 uztric PQQPPQ
38 35 36 37 syl2anc φQPPQ
39 33 34 38 mpjaod φA0=B0
40 39 11 pm2.65i ¬φ