Metamath Proof Explorer


Theorem eigorth

Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for two eigenvectors A and B to be orthogonal. Generalization of Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigorth ABCDTA=CATB=DBCDAihTB=TAihBAihB=0

Proof

Step Hyp Ref Expression
1 fveq2 A=ifAA0TA=TifAA0
2 oveq2 A=ifAA0CA=CifAA0
3 1 2 eqeq12d A=ifAA0TA=CATifAA0=CifAA0
4 3 anbi1d A=ifAA0TA=CATB=DBTifAA0=CifAA0TB=DB
5 4 anbi1d A=ifAA0TA=CATB=DBCDTifAA0=CifAA0TB=DBCD
6 oveq1 A=ifAA0AihTB=ifAA0ihTB
7 1 oveq1d A=ifAA0TAihB=TifAA0ihB
8 6 7 eqeq12d A=ifAA0AihTB=TAihBifAA0ihTB=TifAA0ihB
9 oveq1 A=ifAA0AihB=ifAA0ihB
10 9 eqeq1d A=ifAA0AihB=0ifAA0ihB=0
11 8 10 bibi12d A=ifAA0AihTB=TAihBAihB=0ifAA0ihTB=TifAA0ihBifAA0ihB=0
12 5 11 imbi12d A=ifAA0TA=CATB=DBCDAihTB=TAihBAihB=0TifAA0=CifAA0TB=DBCDifAA0ihTB=TifAA0ihBifAA0ihB=0
13 fveq2 B=ifBB0TB=TifBB0
14 oveq2 B=ifBB0DB=DifBB0
15 13 14 eqeq12d B=ifBB0TB=DBTifBB0=DifBB0
16 15 anbi2d B=ifBB0TifAA0=CifAA0TB=DBTifAA0=CifAA0TifBB0=DifBB0
17 16 anbi1d B=ifBB0TifAA0=CifAA0TB=DBCDTifAA0=CifAA0TifBB0=DifBB0CD
18 13 oveq2d B=ifBB0ifAA0ihTB=ifAA0ihTifBB0
19 oveq2 B=ifBB0TifAA0ihB=TifAA0ihifBB0
20 18 19 eqeq12d B=ifBB0ifAA0ihTB=TifAA0ihBifAA0ihTifBB0=TifAA0ihifBB0
21 oveq2 B=ifBB0ifAA0ihB=ifAA0ihifBB0
22 21 eqeq1d B=ifBB0ifAA0ihB=0ifAA0ihifBB0=0
23 20 22 bibi12d B=ifBB0ifAA0ihTB=TifAA0ihBifAA0ihB=0ifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0
24 17 23 imbi12d B=ifBB0TifAA0=CifAA0TB=DBCDifAA0ihTB=TifAA0ihBifAA0ihB=0TifAA0=CifAA0TifBB0=DifBB0CDifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0
25 oveq1 C=ifCC0CifAA0=ifCC0ifAA0
26 25 eqeq2d C=ifCC0TifAA0=CifAA0TifAA0=ifCC0ifAA0
27 26 anbi1d C=ifCC0TifAA0=CifAA0TifBB0=DifBB0TifAA0=ifCC0ifAA0TifBB0=DifBB0
28 neeq1 C=ifCC0CDifCC0D
29 27 28 anbi12d C=ifCC0TifAA0=CifAA0TifBB0=DifBB0CDTifAA0=ifCC0ifAA0TifBB0=DifBB0ifCC0D
30 29 imbi1d C=ifCC0TifAA0=CifAA0TifBB0=DifBB0CDifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0TifAA0=ifCC0ifAA0TifBB0=DifBB0ifCC0DifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0
31 oveq1 D=ifDD0DifBB0=ifDD0ifBB0
32 31 eqeq2d D=ifDD0TifBB0=DifBB0TifBB0=ifDD0ifBB0
33 32 anbi2d D=ifDD0TifAA0=ifCC0ifAA0TifBB0=DifBB0TifAA0=ifCC0ifAA0TifBB0=ifDD0ifBB0
34 fveq2 D=ifDD0D=ifDD0
35 34 neeq2d D=ifDD0ifCC0DifCC0ifDD0
36 33 35 anbi12d D=ifDD0TifAA0=ifCC0ifAA0TifBB0=DifBB0ifCC0DTifAA0=ifCC0ifAA0TifBB0=ifDD0ifBB0ifCC0ifDD0
37 36 imbi1d D=ifDD0TifAA0=ifCC0ifAA0TifBB0=DifBB0ifCC0DifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0TifAA0=ifCC0ifAA0TifBB0=ifDD0ifBB0ifCC0ifDD0ifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0
38 ifhvhv0 ifAA0
39 ifhvhv0 ifBB0
40 0cn 0
41 40 elimel ifCC0
42 40 elimel ifDD0
43 38 39 41 42 eigorthi TifAA0=ifCC0ifAA0TifBB0=ifDD0ifBB0ifCC0ifDD0ifAA0ihTifBB0=TifAA0ihifBB0ifAA0ihifBB0=0
44 12 24 30 37 43 dedth4h ABCDTA=CATB=DBCDAihTB=TAihBAihB=0
45 44 imp ABCDTA=CATB=DBCDAihTB=TAihBAihB=0