| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 | 3 | anbi1d |  | 
						
							| 5 | 4 | anbi1d |  | 
						
							| 6 |  | oveq1 |  | 
						
							| 7 | 1 | oveq1d |  | 
						
							| 8 | 6 7 | eqeq12d |  | 
						
							| 9 |  | oveq1 |  | 
						
							| 10 | 9 | eqeq1d |  | 
						
							| 11 | 8 10 | bibi12d |  | 
						
							| 12 | 5 11 | imbi12d |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 | 15 | anbi2d |  | 
						
							| 17 | 16 | anbi1d |  | 
						
							| 18 | 13 | oveq2d |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 18 19 | eqeq12d |  | 
						
							| 21 |  | oveq2 |  | 
						
							| 22 | 21 | eqeq1d |  | 
						
							| 23 | 20 22 | bibi12d |  | 
						
							| 24 | 17 23 | imbi12d |  | 
						
							| 25 |  | oveq1 |  | 
						
							| 26 | 25 | eqeq2d |  | 
						
							| 27 | 26 | anbi1d |  | 
						
							| 28 |  | neeq1 |  | 
						
							| 29 | 27 28 | anbi12d |  | 
						
							| 30 | 29 | imbi1d |  | 
						
							| 31 |  | oveq1 |  | 
						
							| 32 | 31 | eqeq2d |  | 
						
							| 33 | 32 | anbi2d |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 34 | neeq2d |  | 
						
							| 36 | 33 35 | anbi12d |  | 
						
							| 37 | 36 | imbi1d |  | 
						
							| 38 |  | ifhvhv0 |  | 
						
							| 39 |  | ifhvhv0 |  | 
						
							| 40 |  | 0cn |  | 
						
							| 41 | 40 | elimel |  | 
						
							| 42 | 40 | elimel |  | 
						
							| 43 | 38 39 41 42 | eigorthi |  | 
						
							| 44 | 12 24 30 37 43 | dedth4h |  | 
						
							| 45 | 44 | imp |  |