Metamath Proof Explorer


Theorem eigre

Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigre ABTA=BAA0AihTA=TAihAB

Proof

Step Hyp Ref Expression
1 fveq2 A=ifAA0TA=TifAA0
2 oveq2 A=ifAA0BA=BifAA0
3 1 2 eqeq12d A=ifAA0TA=BATifAA0=BifAA0
4 neeq1 A=ifAA0A0ifAA00
5 3 4 anbi12d A=ifAA0TA=BAA0TifAA0=BifAA0ifAA00
6 id A=ifAA0A=ifAA0
7 6 1 oveq12d A=ifAA0AihTA=ifAA0ihTifAA0
8 1 6 oveq12d A=ifAA0TAihA=TifAA0ihifAA0
9 7 8 eqeq12d A=ifAA0AihTA=TAihAifAA0ihTifAA0=TifAA0ihifAA0
10 9 bibi1d A=ifAA0AihTA=TAihABifAA0ihTifAA0=TifAA0ihifAA0B
11 5 10 imbi12d A=ifAA0TA=BAA0AihTA=TAihABTifAA0=BifAA0ifAA00ifAA0ihTifAA0=TifAA0ihifAA0B
12 oveq1 B=ifBB0BifAA0=ifBB0ifAA0
13 12 eqeq2d B=ifBB0TifAA0=BifAA0TifAA0=ifBB0ifAA0
14 13 anbi1d B=ifBB0TifAA0=BifAA0ifAA00TifAA0=ifBB0ifAA0ifAA00
15 eleq1 B=ifBB0BifBB0
16 15 bibi2d B=ifBB0ifAA0ihTifAA0=TifAA0ihifAA0BifAA0ihTifAA0=TifAA0ihifAA0ifBB0
17 14 16 imbi12d B=ifBB0TifAA0=BifAA0ifAA00ifAA0ihTifAA0=TifAA0ihifAA0BTifAA0=ifBB0ifAA0ifAA00ifAA0ihTifAA0=TifAA0ihifAA0ifBB0
18 ifhvhv0 ifAA0
19 0cn 0
20 19 elimel ifBB0
21 18 20 eigrei TifAA0=ifBB0ifAA0ifAA00ifAA0ihTifAA0=TifAA0ihifAA0ifBB0
22 11 17 21 dedth2h ABTA=BAA0AihTA=TAihAB
23 22 imp ABTA=BAA0AihTA=TAihAB