Metamath Proof Explorer


Theorem elfix

Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix.1 A V
Assertion elfix A 𝖥𝗂𝗑 R A R A

Proof

Step Hyp Ref Expression
1 elfix.1 A V
2 df-fix 𝖥𝗂𝗑 R = dom R I
3 2 eleq2i A 𝖥𝗂𝗑 R A dom R I
4 1 eldm A dom R I x A R I x
5 brin A R I x A R x A I x
6 ancom A R x A I x A I x A R x
7 vex x V
8 7 ideq A I x A = x
9 eqcom A = x x = A
10 8 9 bitri A I x x = A
11 10 anbi1i A I x A R x x = A A R x
12 5 6 11 3bitri A R I x x = A A R x
13 12 exbii x A R I x x x = A A R x
14 4 13 bitri A dom R I x x = A A R x
15 breq2 x = A A R x A R A
16 1 15 ceqsexv x x = A A R x A R A
17 3 14 16 3bitri A 𝖥𝗂𝗑 R A R A