Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
elfix
Next ⟩
elfix2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfix
Description:
Membership in the fixpoints of a class.
(Contributed by
Scott Fenton
, 11-Apr-2012)
Ref
Expression
Hypothesis
elfix.1
⊢
A
∈
V
Assertion
elfix
⊢
A
∈
𝖥𝗂𝗑
R
↔
A
R
A
Proof
Step
Hyp
Ref
Expression
1
elfix.1
⊢
A
∈
V
2
df-fix
⊢
𝖥𝗂𝗑
R
=
dom
⁡
R
∩
I
3
2
eleq2i
⊢
A
∈
𝖥𝗂𝗑
R
↔
A
∈
dom
⁡
R
∩
I
4
1
eldm
⊢
A
∈
dom
⁡
R
∩
I
↔
∃
x
A
R
∩
I
x
5
brin
⊢
A
R
∩
I
x
↔
A
R
x
∧
A
I
x
6
ancom
⊢
A
R
x
∧
A
I
x
↔
A
I
x
∧
A
R
x
7
vex
⊢
x
∈
V
8
7
ideq
⊢
A
I
x
↔
A
=
x
9
eqcom
⊢
A
=
x
↔
x
=
A
10
8
9
bitri
⊢
A
I
x
↔
x
=
A
11
10
anbi1i
⊢
A
I
x
∧
A
R
x
↔
x
=
A
∧
A
R
x
12
5
6
11
3bitri
⊢
A
R
∩
I
x
↔
x
=
A
∧
A
R
x
13
12
exbii
⊢
∃
x
A
R
∩
I
x
↔
∃
x
x
=
A
∧
A
R
x
14
4
13
bitri
⊢
A
∈
dom
⁡
R
∩
I
↔
∃
x
x
=
A
∧
A
R
x
15
breq2
⊢
x
=
A
→
A
R
x
↔
A
R
A
16
1
15
ceqsexv
⊢
∃
x
x
=
A
∧
A
R
x
↔
A
R
A
17
3
14
16
3bitri
⊢
A
∈
𝖥𝗂𝗑
R
↔
A
R
A