Metamath Proof Explorer


Theorem elfm

Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion elfm X C B fBas Y F : Y X A X FilMap F B A X x B F x A

Proof

Step Hyp Ref Expression
1 fmval X C B fBas Y F : Y X X FilMap F B = X filGen ran t B F t
2 1 eleq2d X C B fBas Y F : Y X A X FilMap F B A X filGen ran t B F t
3 eqid ran t B F t = ran t B F t
4 3 fbasrn B fBas Y F : Y X X C ran t B F t fBas X
5 4 3comr X C B fBas Y F : Y X ran t B F t fBas X
6 elfg ran t B F t fBas X A X filGen ran t B F t A X y ran t B F t y A
7 5 6 syl X C B fBas Y F : Y X A X filGen ran t B F t A X y ran t B F t y A
8 simpr X C B fBas Y F : Y X x B x B
9 eqid F x = F x
10 imaeq2 t = x F t = F x
11 10 rspceeqv x B F x = F x t B F x = F t
12 8 9 11 sylancl X C B fBas Y F : Y X x B t B F x = F t
13 simpl1 X C B fBas Y F : Y X x B X C
14 imassrn F x ran F
15 frn F : Y X ran F X
16 15 3ad2ant3 X C B fBas Y F : Y X ran F X
17 16 adantr X C B fBas Y F : Y X x B ran F X
18 14 17 sstrid X C B fBas Y F : Y X x B F x X
19 13 18 ssexd X C B fBas Y F : Y X x B F x V
20 eqid t B F t = t B F t
21 20 elrnmpt F x V F x ran t B F t t B F x = F t
22 19 21 syl X C B fBas Y F : Y X x B F x ran t B F t t B F x = F t
23 12 22 mpbird X C B fBas Y F : Y X x B F x ran t B F t
24 10 cbvmptv t B F t = x B F x
25 24 elrnmpt y ran t B F t y ran t B F t x B y = F x
26 25 ibi y ran t B F t x B y = F x
27 26 adantl X C B fBas Y F : Y X y ran t B F t x B y = F x
28 simpr X C B fBas Y F : Y X y = F x y = F x
29 28 sseq1d X C B fBas Y F : Y X y = F x y A F x A
30 23 27 29 rexxfrd X C B fBas Y F : Y X y ran t B F t y A x B F x A
31 30 anbi2d X C B fBas Y F : Y X A X y ran t B F t y A A X x B F x A
32 2 7 31 3bitrd X C B fBas Y F : Y X A X FilMap F B A X x B F x A