Metamath Proof Explorer


Theorem elfzouz2

Description: The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzouz2 KM..^NNK

Proof

Step Hyp Ref Expression
1 elfzoelz KM..^NK
2 elfzoel2 KM..^NN
3 elfzolt2 KM..^NK<N
4 zre KK
5 zre NN
6 ltle KNK<NKN
7 4 5 6 syl2an KNK<NKN
8 1 2 7 syl2anc KM..^NK<NKN
9 3 8 mpd KM..^NKN
10 eluz2 NKKNKN
11 1 2 9 10 syl3anbrc KM..^NNK