Metamath Proof Explorer


Theorem elgrug

Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion elgrug UVUUnivTrUxU𝒫xUyUxyUyUxranyU

Proof

Step Hyp Ref Expression
1 treq u=UTruTrU
2 eleq2 u=U𝒫xu𝒫xU
3 eleq2 u=UxyuxyU
4 3 raleqbi1dv u=UyuxyuyUxyU
5 oveq1 u=Uux=Ux
6 eleq2 u=UranyuranyU
7 5 6 raleqbidv u=UyuxranyuyUxranyU
8 2 4 7 3anbi123d u=U𝒫xuyuxyuyuxranyu𝒫xUyUxyUyUxranyU
9 8 raleqbi1dv u=Uxu𝒫xuyuxyuyuxranyuxU𝒫xUyUxyUyUxranyU
10 1 9 anbi12d u=UTruxu𝒫xuyuxyuyuxranyuTrUxU𝒫xUyUxyUyUxranyU
11 df-gru Univ=u|Truxu𝒫xuyuxyuyuxranyu
12 10 11 elab2g UVUUnivTrUxU𝒫xUyUxyUyUxranyU