Metamath Proof Explorer


Theorem elico2

Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008) (Revised by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion elico2 AB*CABCACC<B

Proof

Step Hyp Ref Expression
1 rexr AA*
2 elico1 A*B*CABC*ACC<B
3 1 2 sylan AB*CABC*ACC<B
4 mnfxr −∞*
5 4 a1i AB*C*ACC<B−∞*
6 1 ad2antrr AB*C*ACC<BA*
7 simpr1 AB*C*ACC<BC*
8 mnflt A−∞<A
9 8 ad2antrr AB*C*ACC<B−∞<A
10 simpr2 AB*C*ACC<BAC
11 5 6 7 9 10 xrltletrd AB*C*ACC<B−∞<C
12 simplr AB*C*ACC<BB*
13 pnfxr +∞*
14 13 a1i AB*C*ACC<B+∞*
15 simpr3 AB*C*ACC<BC<B
16 pnfge B*B+∞
17 16 ad2antlr AB*C*ACC<BB+∞
18 7 12 14 15 17 xrltletrd AB*C*ACC<BC<+∞
19 xrrebnd C*C−∞<CC<+∞
20 7 19 syl AB*C*ACC<BC−∞<CC<+∞
21 11 18 20 mpbir2and AB*C*ACC<BC
22 21 10 15 3jca AB*C*ACC<BCACC<B
23 22 ex AB*C*ACC<BCACC<B
24 rexr CC*
25 24 3anim1i CACC<BC*ACC<B
26 23 25 impbid1 AB*C*ACC<BCACC<B
27 3 26 bitrd AB*CABCACC<B