Metamath Proof Explorer


Theorem elicore

Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elicore ACABC

Proof

Step Hyp Ref Expression
1 df-ico .=x*,y*z*|xzz<y
2 1 elixx3g CABA*B*C*ACC<B
3 2 biimpi CABA*B*C*ACC<B
4 3 simpld CABA*B*C*
5 4 simp3d CABC*
6 5 adantl ACABC*
7 simpl ACABA
8 3 simprd CABACC<B
9 8 simpld CABAC
10 9 adantl ACABAC
11 4 simp2d CABB*
12 11 adantl ACABB*
13 pnfxr +∞*
14 13 a1i ACAB+∞*
15 8 simprd CABC<B
16 15 adantl ACABC<B
17 pnfge B*B+∞
18 11 17 syl CABB+∞
19 18 adantl ACABB+∞
20 6 12 14 16 19 xrltletrd ACABC<+∞
21 xrre3 C*AACC<+∞C
22 6 7 10 20 21 syl22anc ACABC