Metamath Proof Explorer


Theorem elmpocl

Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis elmpocl.f F=xA,yBC
Assertion elmpocl XSFTSATB

Proof

Step Hyp Ref Expression
1 elmpocl.f F=xA,yBC
2 df-mpo xA,yBC=xyz|xAyBz=C
3 1 2 eqtri F=xyz|xAyBz=C
4 3 dmeqi domF=domxyz|xAyBz=C
5 dmoprabss domxyz|xAyBz=CA×B
6 4 5 eqsstri domFA×B
7 elfvdm XFSTSTdomF
8 df-ov SFT=FST
9 7 8 eleq2s XSFTSTdomF
10 6 9 sselid XSFTSTA×B
11 opelxp STA×BSATB
12 10 11 sylib XSFTSATB