Metamath Proof Explorer


Theorem elmzpcl

Description: Double substitution lemma for mzPolyCld . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion elmzpcl VVPmzPolyCldVPViV×iPjVxVxjPfPgPf+fgPf×fgP

Proof

Step Hyp Ref Expression
1 mzpclval VVmzPolyCldV=p𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgp
2 1 eleq2d VVPmzPolyCldVPp𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgp
3 eleq2 p=PV×ipV×iP
4 3 ralbidv p=PiV×ipiV×iP
5 eleq2 p=PxVxjpxVxjP
6 5 ralbidv p=PjVxVxjpjVxVxjP
7 4 6 anbi12d p=PiV×ipjVxVxjpiV×iPjVxVxjP
8 eleq2 p=Pf+fgpf+fgP
9 eleq2 p=Pf×fgpf×fgP
10 8 9 anbi12d p=Pf+fgpf×fgpf+fgPf×fgP
11 10 raleqbi1dv p=Pgpf+fgpf×fgpgPf+fgPf×fgP
12 11 raleqbi1dv p=Pfpgpf+fgpf×fgpfPgPf+fgPf×fgP
13 7 12 anbi12d p=PiV×ipjVxVxjpfpgpf+fgpf×fgpiV×iPjVxVxjPfPgPf+fgPf×fgP
14 13 elrab Pp𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgpP𝒫ViV×iPjVxVxjPfPgPf+fgPf×fgP
15 ovex VV
16 15 elpw2 P𝒫VPV
17 16 anbi1i P𝒫ViV×iPjVxVxjPfPgPf+fgPf×fgPPViV×iPjVxVxjPfPgPf+fgPf×fgP
18 14 17 bitri Pp𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgpPViV×iPjVxVxjPfPgPf+fgPf×fgP
19 2 18 bitrdi VVPmzPolyCldVPViV×iPjVxVxjPfPgPf+fgPf×fgP