Metamath Proof Explorer


Theorem elnn0z

Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion elnn0z N 0 N 0 N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 elnnz N N 0 < N
3 eqcom N = 0 0 = N
4 2 3 orbi12i N N = 0 N 0 < N 0 = N
5 id N N
6 0z 0
7 eleq1 0 = N 0 N
8 6 7 mpbii 0 = N N
9 5 8 jaoi N 0 = N N
10 orc N N 0 = N
11 9 10 impbii N 0 = N N
12 11 anbi1i N 0 = N 0 < N 0 = N N 0 < N 0 = N
13 ordir N 0 < N 0 = N N 0 = N 0 < N 0 = N
14 0re 0
15 zre N N
16 leloe 0 N 0 N 0 < N 0 = N
17 14 15 16 sylancr N 0 N 0 < N 0 = N
18 17 pm5.32i N 0 N N 0 < N 0 = N
19 12 13 18 3bitr4i N 0 < N 0 = N N 0 N
20 1 4 19 3bitri N 0 N 0 N