Metamath Proof Explorer


Theorem elovmpt3rab1

Description: Implications for the value of an operation defined by the maps-to notation with a function into a class abstraction as a result having an element. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o O=xV,yVzMaN|φ
ovmpt3rab1.m x=Xy=YM=K
ovmpt3rab1.n x=Xy=YN=L
Assertion elovmpt3rab1 KULTAXOYZXVYVZKAL

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o O=xV,yVzMaN|φ
2 ovmpt3rab1.m x=Xy=YM=K
3 ovmpt3rab1.n x=Xy=YN=L
4 1 elovmpt3imp AXOYZXVYV
5 simprl AXOYZXVYVKULTXVYV
6 elfvdm AXOYZZdomXOY
7 simpl XVYVXV
8 7 adantr XVYVKULTXV
9 simplr XVYVKULTYV
10 simprl XVYVKULTKU
11 simprr XVYVKULTLT
12 1 2 3 ovmpt3rabdm XVYVKULTdomXOY=K
13 8 9 10 11 12 syl31anc XVYVKULTdomXOY=K
14 13 eleq2d XVYVKULTZdomXOYZK
15 14 biimpcd ZdomXOYXVYVKULTZK
16 15 adantr ZdomXOYAXOYZXVYVKULTZK
17 16 imp ZdomXOYAXOYZXVYVKULTZK
18 simpl ZKZdomXOYAXOYZXVYVKULTZK
19 simplr ZdomXOYAXOYZXVYVKULTAXOYZ
20 19 adantl ZKZdomXOYAXOYZXVYVKULTAXOYZ
21 simpl KULTKU
22 21 anim2i XVYVKULTXVYVKU
23 df-3an XVYVKUXVYVKU
24 22 23 sylibr XVYVKULTXVYVKU
25 24 ad2antll ZKZdomXOYAXOYZXVYVKULTXVYVKU
26 sbceq1a y=Yφ[˙Y/y]˙φ
27 sbceq1a x=X[˙Y/y]˙φ[˙X/x]˙[˙Y/y]˙φ
28 26 27 sylan9bbr x=Xy=Yφ[˙X/x]˙[˙Y/y]˙φ
29 nfsbc1v x[˙X/x]˙[˙Y/y]˙φ
30 nfcv _yX
31 nfsbc1v y[˙Y/y]˙φ
32 30 31 nfsbcw y[˙X/x]˙[˙Y/y]˙φ
33 1 2 3 28 29 32 ovmpt3rab1 XVYVKUXOY=zKaL|[˙X/x]˙[˙Y/y]˙φ
34 33 fveq1d XVYVKUXOYZ=zKaL|[˙X/x]˙[˙Y/y]˙φZ
35 25 34 syl ZKZdomXOYAXOYZXVYVKULTXOYZ=zKaL|[˙X/x]˙[˙Y/y]˙φZ
36 rabexg LTaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φV
37 36 adantl KULTaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φV
38 37 ad2antll ZdomXOYAXOYZXVYVKULTaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φV
39 nfcv _zZ
40 nfsbc1v z[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
41 nfcv _zL
42 40 41 nfrabw _zaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
43 sbceq1a z=Z[˙X/x]˙[˙Y/y]˙φ[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
44 43 rabbidv z=ZaL|[˙X/x]˙[˙Y/y]˙φ=aL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
45 eqid zKaL|[˙X/x]˙[˙Y/y]˙φ=zKaL|[˙X/x]˙[˙Y/y]˙φ
46 39 42 44 45 fvmptf ZKaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φVzKaL|[˙X/x]˙[˙Y/y]˙φZ=aL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
47 38 46 sylan2 ZKZdomXOYAXOYZXVYVKULTzKaL|[˙X/x]˙[˙Y/y]˙φZ=aL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
48 35 47 eqtr2d ZKZdomXOYAXOYZXVYVKULTaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ=XOYZ
49 20 48 eleqtrrd ZKZdomXOYAXOYZXVYVKULTAaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φ
50 elrabi AaL|[˙Z/z]˙[˙X/x]˙[˙Y/y]˙φAL
51 49 50 syl ZKZdomXOYAXOYZXVYVKULTAL
52 18 51 jca ZKZdomXOYAXOYZXVYVKULTZKAL
53 17 52 mpancom ZdomXOYAXOYZXVYVKULTZKAL
54 53 exp31 ZdomXOYAXOYZXVYVKULTZKAL
55 6 54 mpcom AXOYZXVYVKULTZKAL
56 55 imp AXOYZXVYVKULTZKAL
57 5 56 jca AXOYZXVYVKULTXVYVZKAL
58 57 exp32 AXOYZXVYVKULTXVYVZKAL
59 4 58 mpd AXOYZKULTXVYVZKAL
60 59 com12 KULTAXOYZXVYVZKAL