| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
1
|
eqeq2d |
|
| 3 |
|
oveq1 |
|
| 4 |
3
|
eqeq1d |
|
| 5 |
2 4
|
anbi12d |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
eqeq2d |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
eqeq1d |
|
| 10 |
7 9
|
anbi12d |
|
| 11 |
|
simpllr |
|
| 12 |
|
simplr |
|
| 13 |
12
|
nnzd |
|
| 14 |
12
|
nnne0d |
|
| 15 |
|
divgcdz |
|
| 16 |
11 13 14 15
|
syl3anc |
|
| 17 |
|
divgcdnnr |
|
| 18 |
12 11 17
|
syl2anc |
|
| 19 |
|
simpr |
|
| 20 |
11
|
zcnd |
|
| 21 |
12
|
nncnd |
|
| 22 |
11 13
|
gcdcld |
|
| 23 |
22
|
nn0cnd |
|
| 24 |
14
|
neneqd |
|
| 25 |
24
|
intnand |
|
| 26 |
|
gcdeq0 |
|
| 27 |
26
|
necon3abid |
|
| 28 |
27
|
biimpar |
|
| 29 |
11 13 25 28
|
syl21anc |
|
| 30 |
20 21 23 14 29
|
divcan7d |
|
| 31 |
19 30
|
eqtr4d |
|
| 32 |
|
divgcdcoprm0 |
|
| 33 |
11 13 14 32
|
syl3anc |
|
| 34 |
31 33
|
jca |
|
| 35 |
5 10 16 18 34
|
2rspcedvdw |
|
| 36 |
|
elq |
|
| 37 |
36
|
biimpi |
|
| 38 |
35 37
|
r19.29vva |
|