| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑝 = ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) → ( 𝑝 / 𝑞 ) = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) ) |
| 2 |
1
|
eqeq2d |
⊢ ( 𝑝 = ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) → ( 𝑄 = ( 𝑝 / 𝑞 ) ↔ 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑝 = ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) → ( 𝑝 gcd 𝑞 ) = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) → ( ( 𝑝 gcd 𝑞 ) = 1 ↔ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) = 1 ) ) |
| 5 |
2 4
|
anbi12d |
⊢ ( 𝑝 = ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) → ( ( 𝑄 = ( 𝑝 / 𝑞 ) ∧ ( 𝑝 gcd 𝑞 ) = 1 ) ↔ ( 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) ∧ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) = 1 ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑞 = ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) → ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ) |
| 7 |
6
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) → ( 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) ↔ 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑞 = ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) → ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑞 = ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) → ( ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) = 1 ↔ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = 1 ) ) |
| 10 |
7 9
|
anbi12d |
⊢ ( 𝑞 = ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) → ( ( 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / 𝑞 ) ∧ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd 𝑞 ) = 1 ) ↔ ( 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ∧ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = 1 ) ) ) |
| 11 |
|
simpllr |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑥 ∈ ℤ ) |
| 12 |
|
simplr |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑦 ∈ ℕ ) |
| 13 |
12
|
nnzd |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑦 ∈ ℤ ) |
| 14 |
12
|
nnne0d |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑦 ≠ 0 ) |
| 15 |
|
divgcdz |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) ∈ ℤ ) |
| 16 |
11 13 14 15
|
syl3anc |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) ∈ ℤ ) |
| 17 |
|
divgcdnnr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ∈ ℕ ) |
| 18 |
12 11 17
|
syl2anc |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ∈ ℕ ) |
| 19 |
|
simpr |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑄 = ( 𝑥 / 𝑦 ) ) |
| 20 |
11
|
zcnd |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 21 |
12
|
nncnd |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 22 |
11 13
|
gcdcld |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑥 gcd 𝑦 ) ∈ ℕ0 ) |
| 23 |
22
|
nn0cnd |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑥 gcd 𝑦 ) ∈ ℂ ) |
| 24 |
14
|
neneqd |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ¬ 𝑦 = 0 ) |
| 25 |
24
|
intnand |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) |
| 26 |
|
gcdeq0 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 gcd 𝑦 ) = 0 ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
| 27 |
26
|
necon3abid |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 gcd 𝑦 ) ≠ 0 ↔ ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) → ( 𝑥 gcd 𝑦 ) ≠ 0 ) |
| 29 |
11 13 25 28
|
syl21anc |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑥 gcd 𝑦 ) ≠ 0 ) |
| 30 |
20 21 23 14 29
|
divcan7d |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = ( 𝑥 / 𝑦 ) ) |
| 31 |
19 30
|
eqtr4d |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ) |
| 32 |
|
divgcdcoprm0 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) → ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = 1 ) |
| 33 |
11 13 14 32
|
syl3anc |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = 1 ) |
| 34 |
31 33
|
jca |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ( 𝑄 = ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) / ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) ∧ ( ( 𝑥 / ( 𝑥 gcd 𝑦 ) ) gcd ( 𝑦 / ( 𝑥 gcd 𝑦 ) ) ) = 1 ) ) |
| 35 |
5 10 16 18 34
|
2rspcedvdw |
⊢ ( ( ( ( 𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑄 = ( 𝑥 / 𝑦 ) ) → ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ ( 𝑄 = ( 𝑝 / 𝑞 ) ∧ ( 𝑝 gcd 𝑞 ) = 1 ) ) |
| 36 |
|
elq |
⊢ ( 𝑄 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑄 = ( 𝑥 / 𝑦 ) ) |
| 37 |
36
|
biimpi |
⊢ ( 𝑄 ∈ ℚ → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑄 = ( 𝑥 / 𝑦 ) ) |
| 38 |
35 37
|
r19.29vva |
⊢ ( 𝑄 ∈ ℚ → ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ ( 𝑄 = ( 𝑝 / 𝑞 ) ∧ ( 𝑝 gcd 𝑞 ) = 1 ) ) |