Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | elsingles | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | vsnex | |
|
3 | eleq1 | |
|
4 | 2 3 | mpbiri | |
5 | 4 | exlimiv | |
6 | eleq1 | |
|
7 | eqeq1 | |
|
8 | 7 | exbidv | |
9 | df-singles | |
|
10 | 9 | eleq2i | |
11 | vex | |
|
12 | 11 | elrn | |
13 | vex | |
|
14 | 13 11 | brsingle | |
15 | 14 | exbii | |
16 | 10 12 15 | 3bitri | |
17 | 6 8 16 | vtoclbg | |
18 | 1 5 17 | pm5.21nii | |