Metamath Proof Explorer


Theorem elunirn

Description: Membership in the union of the range of a function. See elunirnALT for a shorter proof which uses ax-pow . (Contributed by NM, 24-Sep-2006)

Ref Expression
Assertion elunirn Fun F A ran F x dom F A F x

Proof

Step Hyp Ref Expression
1 eluni A ran F y A y y ran F
2 funfn Fun F F Fn dom F
3 fvelrnb F Fn dom F y ran F x dom F F x = y
4 2 3 sylbi Fun F y ran F x dom F F x = y
5 4 anbi2d Fun F A y y ran F A y x dom F F x = y
6 r19.42v x dom F A y F x = y A y x dom F F x = y
7 5 6 bitr4di Fun F A y y ran F x dom F A y F x = y
8 eleq2 F x = y A F x A y
9 8 biimparc A y F x = y A F x
10 9 reximi x dom F A y F x = y x dom F A F x
11 7 10 syl6bi Fun F A y y ran F x dom F A F x
12 11 exlimdv Fun F y A y y ran F x dom F A F x
13 fvelrn Fun F x dom F F x ran F
14 13 a1d Fun F x dom F A F x F x ran F
15 14 ancld Fun F x dom F A F x A F x F x ran F
16 fvex F x V
17 eleq2 y = F x A y A F x
18 eleq1 y = F x y ran F F x ran F
19 17 18 anbi12d y = F x A y y ran F A F x F x ran F
20 16 19 spcev A F x F x ran F y A y y ran F
21 15 20 syl6 Fun F x dom F A F x y A y y ran F
22 21 rexlimdva Fun F x dom F A F x y A y y ran F
23 12 22 impbid Fun F y A y y ran F x dom F A F x
24 1 23 bitrid Fun F A ran F x dom F A F x