Metamath Proof Explorer


Theorem elunop

Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion elunop TUniOpT:ontoxyTxihTy=xihy

Proof

Step Hyp Ref Expression
1 elex TUniOpTV
2 fof T:ontoT:
3 ax-hilex V
4 fex T:VTV
5 2 3 4 sylancl T:ontoTV
6 5 adantr T:ontoxyTxihTy=xihyTV
7 foeq1 t=Tt:ontoT:onto
8 fveq1 t=Ttx=Tx
9 fveq1 t=Tty=Ty
10 8 9 oveq12d t=Ttxihty=TxihTy
11 10 eqeq1d t=Ttxihty=xihyTxihTy=xihy
12 11 2ralbidv t=Txytxihty=xihyxyTxihTy=xihy
13 7 12 anbi12d t=Tt:ontoxytxihty=xihyT:ontoxyTxihTy=xihy
14 df-unop UniOp=t|t:ontoxytxihty=xihy
15 13 14 elab2g TVTUniOpT:ontoxyTxihTy=xihy
16 1 6 15 pm5.21nii TUniOpT:ontoxyTxihTy=xihy