Metamath Proof Explorer


Theorem elwwlks2ons3

Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 12-May-2021) (Revised by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlks2onv.v V=VtxG
Assertion elwwlks2ons3 WA2WWalksNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGC

Proof

Step Hyp Ref Expression
1 wwlks2onv.v V=VtxG
2 id WA2WWalksNOnGCWA2WWalksNOnGC
3 1 elwwlks2ons3im WA2WWalksNOnGCW=⟨“AW1C”⟩W1V
4 anass WA2WWalksNOnGCW=⟨“AW1C”⟩W1VWA2WWalksNOnGCW=⟨“AW1C”⟩W1V
5 2 3 4 sylanbrc WA2WWalksNOnGCWA2WWalksNOnGCW=⟨“AW1C”⟩W1V
6 simpr WA2WWalksNOnGCW=⟨“AW1C”⟩W1VW1V
7 s3eq2 b=W1⟨“AbC”⟩=⟨“AW1C”⟩
8 eqeq2 ⟨“AbC”⟩=⟨“AW1C”⟩W=⟨“AbC”⟩W=⟨“AW1C”⟩
9 eleq1 ⟨“AbC”⟩=⟨“AW1C”⟩⟨“AbC”⟩A2WWalksNOnGC⟨“AW1C”⟩A2WWalksNOnGC
10 8 9 anbi12d ⟨“AbC”⟩=⟨“AW1C”⟩W=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCW=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
11 7 10 syl b=W1W=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCW=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
12 11 adantl WA2WWalksNOnGCW=⟨“AW1C”⟩W1Vb=W1W=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCW=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
13 simpr WA2WWalksNOnGCW=⟨“AW1C”⟩W=⟨“AW1C”⟩
14 eleq1 W=⟨“AW1C”⟩WA2WWalksNOnGC⟨“AW1C”⟩A2WWalksNOnGC
15 14 biimpac WA2WWalksNOnGCW=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
16 13 15 jca WA2WWalksNOnGCW=⟨“AW1C”⟩W=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
17 16 adantr WA2WWalksNOnGCW=⟨“AW1C”⟩W1VW=⟨“AW1C”⟩⟨“AW1C”⟩A2WWalksNOnGC
18 6 12 17 rspcedvd WA2WWalksNOnGCW=⟨“AW1C”⟩W1VbVW=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGC
19 5 18 syl WA2WWalksNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGC
20 eleq1 ⟨“AbC”⟩=W⟨“AbC”⟩A2WWalksNOnGCWA2WWalksNOnGC
21 20 eqcoms W=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCWA2WWalksNOnGC
22 21 biimpa W=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCWA2WWalksNOnGC
23 22 rexlimivw bVW=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGCWA2WWalksNOnGC
24 19 23 impbii WA2WWalksNOnGCbVW=⟨“AbC”⟩⟨“AbC”⟩A2WWalksNOnGC